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Gauge symmetry in string theory

By P. GopparD

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Stlver Street, Cambridge CB3 9EW, U.K.

An account is given of the way symmetry is incorporated into string theory by using
the Frenkel-Kac-Segal mechanism, taken from the representation theory of affine
Kac-Moody algebras. The intrinsically quantum mechanical nature of this
mechanism is emphasized, and the present stage of development of string theory is
compared with the ‘old quantum theory’. The corresponding method of incor-
porating gauge symmetry into superstring theories is discussed and arguments
that appear to prevent the construction of realistic theories of this type are reviewed
in outline.

1. INTRODUCTION

The renaissance of string theory, which started in 1984 with the discovery of the anomaly
cancellation by Green & Schwarz (1984), quickly led to the proposal of the heterotic string
theory (Gross et al. 19854, b, ¢). This contained, in particular, two important conceptual
developments. Each of these had been adumbrated in previous work but were now realized in
a concrete, one might almost say blatant, fashion. Firstly, there was the realization that the left-
and right-moving waves on a closed string can be treated to a large degree independently
(though they are linked through considerations of modular invariance). This idea was there to
some extent in the formulation of the Gliozzi-Olive-Scherk (Gso) projection (Gliozzi et al.
1976, 1977), but in the heterotic string it reaches the extremity of having the left-moving modes
vibrating in 26 dimensions in some sense, whereas the right-moving modes vibrate in 10, but
have more degrees of freedom. (Because the extra dimensions for the left-moving modes are,
in a sense we shall explain, intrinsically quantum mechanical, this perhaps somewhat
disturbing picture need not be taken too literally.)

Secondly, and at least equally importantly, the heterotic string incorporated gauge
symmetry in a new way, by using the Frenkel-Kac-Segal (Fks) mechanism (Frenkel & Kac
1980; Segal 1981). Originally, internal symmetry was incorporated into string theory by using
the Chan—Paton procedure (Paton & Chan 1969), which could be applied only to open string
theories. It could be pictured as attaching to the ends of the string objects that had no inertia
but merely carried the ‘colour’ quantum numbers of quarks (in the context of building the
gauge symmetry of the strong interactions).

Although this procedure enabled Neveu & Scherk to show that non-abelian gauge symmetry
could be incorporated inside string theory (Neveu & Scherk 1972), it was not wholly
satisfactory for a number of reasons. It meant that closed strings were intrinsically neutral.
Perhaps more fundamentally, it seems contrary to the general spirit of string theory to have the
charges concentrated at two (or more) points of the string, rather than spread out along its
length. The extra consistency claimed for string theories, as opposed to theories of point
particles, is usually ascribed to the fact that strings are not all localized at points, and so it
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would seem somewhat at variance to the general philosophy of string theory to concentrate the
charges in this way. :

The rks mechanism, which applies to closed string theories, describes the internal symmetry
generators (and so the charges) as the integrals of local densities along the string. Thus the
charges are, in a sense, smeared out. The work of Frenkel & Kac (1980), and of Segal (1981),
was directed at constructing representations of affine Kac-Moody algebras using the vertex
operators that had occurred in the development of dual models, before these models were
reinterpreted as string theory. (In fact, such constructions had already occurred in special cases
in the physics literature-(Halpern 1975; Banks et al. 1976).) An attempt to elucidate the Fks
mechanism in the context of the formalism commonly used in string theory, and to develop it
further was made by Goddard & Olive (1984), who pointed out that this approach suggested
that Spin(32)/Z, and E4 x Eg might be particularly interesting possibilities for gauge groups.
Of course, it was precisely for these gauge groups that Green & Schwarz subsequently found
the anomaly cancellation, and for which the heterotic string theories could be constructed.

An important feature of the Fks mechanism, which has not always been stressed as much as
it might in the literature, is that it is intrinsically quantum mechanical. We shall discuss this
in some detail in §2 (see also Goddard 1987). This is to be contrasted with the Kaluza—Klein
mechanism for internal symmetries, which incorporates the symmetry at the classical level. In
this mechanism, space-time is enlarged from R* ! to R** x M, where M is a compact manifold,
and the internal symmetries are the isometries of M. In the Fks mechanism, we consider closed
strings moving on a space of the form R*! x T, a torus of dimension r, say. Classically, this gives
rise to an internal symmetry of U(1)", through a Kaluza-Klein type mechanism, but this
symmetry is enhanced in the quantum theory to a non-abelian symmetry group G for a torus
T of suitable dimensions, which are intrinsically quantum mechanical. The rank of G is the
dimension 7 of the torus.

In the past four years there has been much frenetic activity in string theory, which has
brought the subject to the attention of the wider scientific community, and even beyond,
attracting much bemusement and a little derision. All this may be encouraging but it might
well be argued that there has been much less conceptual progress in this period of intense
activity since 1984 than in the first period of development, from 1968 to 1974 or 1976, when
the subject was being pursued by a smaller band of physicists, whose efforts were less welcomed
by the community at large. At that time there were major conceptual developments every year
(e.g. Veneziano formula, n-point functions, higher-order contributions, Virasoro—Shapiro
model, Virasoro conditions, fermionic models, supersymmetry, conformal field theory, no-
ghost theorem, string picture, projection operators and the calculation of fermion scattering,
connection with non-abelian gauge theory and gravity, Gso projection). In the intervening
period, up to 1984, there were also a few major advances in our understanding of string theory,
most notably Polyakov’s (19814, ) path integral formulation (which made the connection
with the methods of field theory much more immediate, thus making string theory more
accessible and acceptable to a wider audience, and also facilitated the treatment of curved
backgrounds, an essential step in substantiating the claims that string theory provides a
successful quantum theory of gravity) and the proving of the space-time supersymmetry of the
10-dimensional theory, then renamed superstring theory (Green & Schwarz 1981).

Among the areas in which there has been conceptual development in the past four years, two
related ones might be singled out (leaving aside string field theory, particularly Witten’s (1986)

[ 12]
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beautiful approach, the ultimate status of which is unclear so far), namely modular invariance
and conformal field theory. In the realization that ideas associated with the modular
transformation properties of string partition functions could be useful in the classification of
possible consistent string theories dates back to the work of Nahm (1976, 1977), which might
have provided a greater stimulus had it not been published at a time when interest in string
theory was rapidly diminishing. One of the recent advances in understanding has been to
appreciate how crucial these properties are for the consistency of closed string theories,
anomaly cancellation for example, and how they parallel considerations recently introduced in
the study of the critical behaviour of two-dimensional statistical systems by Cardy (1986).

The mathematical language that unites two-dimensional critical phenomena with string
theory is that of conformal field theory. In the context of string theory, the conformal field
theory is the theory of the string degrees regarded as at theory defined over the two-
dimensional world-sheet of the string. Elucidating the relation between the properties of the
string in space-time and the properties of the conformal field theory defined by considering the
dynamics of its degrees of freedom over its world-sheet, viewed as a two-dimensional ‘world’
itself, has been another area in which our understanding has increased recently. For example,
a correspondence has been found between N = 2 superconformal invariance on the world-sheet
and space-time supersymmetry (D. Friedan, A. Kent, S. Shenker & E. Witten, unpublished
work 1987; Banks et al. 1988). In fact a programme has been outlined in which the conformal
structure of string theory has put forward as the essential concept, with space and time being
in some sense derived phenomenological concepts (Friedan & Shenker 1986) (though, a little
paradoxically, this sophisticated approach might be regarded from a certain point of view as
a step backwards, because realizing that the string world-sheet was to be thought of as
embedded in space-time (Y.Nambu, unpublished work 1970; Goto 1971) was a very
significant advance in the development of string theory). In any case it is widely expected that
further advances in string theory will come from a progress in our understanding of conformal
field theory.

In our review of some aspects of gauge symmetry in string theory, the ideas relating to
conformal field theory and, although we shall not be able to discuss it in detail, modular
invariance, will play an important role. Under the heading of conformal field theory may be
subsumed considerations relating to the infinite-dimensional Lie algebras that enable us to
understand much of the symmetry structure of string theories. (For a review of infinite-
dimensional algebras in relation to quantum physics see Goddard & Olive (1986).) In §2 I
shall discuss the Fks mechanism for the introduction of gauge symmetry into string theory,
emphasizing its quantum-mechanical nature, and draw attention to some potentially
paradoxical aspects of it. In §3 I discuss an analogous mechanism for gauge symmetry in
superstring theories. This procedure enables me to obtain the observed gauge group, but not the
correct representations for the quarks and leptons. I sketch the present obstacles to obtaining
a realistic physical this way.

2. THE FRENKEL-KAC-SEGAL MECHANISM

The simplest geometric approach to string theory, and in many ways the one with the most
intuitive physical picture, is that of Y. Nambu (unpublished work, 1970) and Goto (1971).
This based on the action principle, directly generalizing the prescription that point particles

[13]
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move along geodesics, that classically the string moves in such a way as to extremize the area
that it sweeps out in d-dimensional space-time (the area of its ‘world-sheet’). Thus one has to
find the extremum of the action

o = —?J[(ix’)2—x2x'2]%dad1, , (1)

where the world-sheet of the string is the two-dimensional surface #*(co,7), 0 < 0 < 2r,
—00 < T < 00, and the constant 7; has been introduced to ensure that &/ has the correct
dimensions of action; 7, can be interpreted as the ‘rest tension’ in the string (Goddard et al.
1973). Here we shall only consider closed strings and so we have the condition x(o,7) =
x(o+2m, 7). The velocity of light has been denoted by ¢ as usual and we use the notation

i=0x/dr, x =ox/do. 2)

If we quantize the simplest motions of the string, which are those in which it rotates, doubled
up on itself into a straight line, in a plane, we see that the lowest quantum mechanical modes
of the string have a characteristic length,

l=+/(ct/nT,) 3)

(which up to a constant could have been deduced on dimensional grounds). If the theory is
accommodate gravity on a realistic scale, this length has to be comparable in magnitude with

the Planck length I = v/ (Gh/) ~ 107 cm, 4)

and then all the massive states of the string will have masses on the scale of the Planck mass
mp = +/ (#/G).

This leads to a potential paradox, for which there may be only partial explanations so far.
The Fks mechanism, currently thought to be responsible for providing the observed symmetries
of nature within the context of a string theory, requires that the string be moving in some of
the ‘internal’ dimensions, i.e. those in excess of the familiar four, on a torus with a particular
shape, as we shall discuss in greater detail in this section. The dimensions of this torus are fixed
at values which are comparable with the Planck scale (4). Although the theory of a free string
moving on such a toroidal background would be consistent in itself, we would not be content
with this of course and we would wish to consider a theory of interacting strings. It is an
inevitable consequence of the uncertainty principle in a quantum theory containing gravity
that these fluctuations should be able to disturb the background. The fact that the fluctuations
of the string have energies on a scale m; ¢® means that there will be fluctuations in the
background geometry on a scale /;, the scale of the torus itself. Given such large fluctuations
in the background geometry responsible for it, one would expect the Fks symmetry to
disappear, and we cannot consider a torus with dimension large on the Planck scale, because
this would not possess the Fks symmetry.

One way round this potential difficulty is to suppose that the interaction between strings to
be very weak, so that the shape providing the symmetry is disturbed very little. This would be
a valid approach in string perturbation theory, sufficing perhaps to give a mathematical
definition of string theory, but realistically we do not expect strings to be weakly coupled on
the Planck scale in a realistic theory. Another way round this difficulty is to note that the
observed symmetries in the heterotic string theory, for example, are supposed to come from the
extra 16 dimensions available to the left-moving modes but not to the right-moving ones. This

[[14]
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GAUGE SYMMETRY IN STRING THEORY 333

provides us with a rigid structure, incapable of deformation, like the affine Kac-Moody algebra
resulting from it, and so unresponsive to the fluctuations we have been discussing. This is a
potentially mathematically consistent answer to the ‘paradox’, but it might be thought not to
be completely convincing physically, even if these extra 16 dimensions are not to be taken too
seriously. It sounds rather like introducing a rigid wall into a physical problem, and this is
procedure which, though superficially consistent, can often lead to inconsistencies on closer
examination.

If we are not content with this explanation, we might regard the ‘paradox’ as rather
reminiscent of that associated with the stability of the Bohr orbits of electrons in the old
quantum theory. Bohr’s original quantization conditions might be seen as analogous to rigidly
fixing the dimensions of the torus in terms of multiples of /, the string length. Just as the Bohr
orbits could be destroyed, within the pseudo-classical framework of their formulation, by
allowing the electron to radiate (thus removing the explanation of the observed discrete
spectral lines, which was their raison &étre) so the torus can be destroyed by allowing the strings
to interact with their background. If there is a real difficulty here, it may be that its resolution
will require a conceptual revolution, associated with understanding physical phenomena on
length scales of the order of /i, just as quantum theory required a revolution associated with the
description of phenomena with action comparable with #. Because string theory has introduced
a third, and presumably the last, dimension-bearing constant, ! (after ¢ and #£), it would be
surprising, and perhaps disappointing, if it did not require a complete revision of our concepts.
These conceptual revolutions (relativity and quantum mechanics) have been successively more
drastic and have taken us further from the world of common experience. They have been less
immediately accessible. This should be even more so in this third case. A major aspect of such
a revolution may well be the abolition of the space-time continuum, and there have been
various suggestions along these lines in the context of string field theory (Witten 1986) and
conformal field theory (Friedan & Shenker 1986), but it may be that something very much
more radical, making a departure from quantum theory as well, is required. A more recent
extremely interesting suggestion for the nature of a theory on length scales less than [, both
radical and plausible, is provided by Witten (1988). ;

As a preliminary to describing the Fks mechanism, we shall now review in outline the
quantization of the string (Goddard et al. 1973). Choosing orthonormal coordinates o, 7 such
that

B+xt=0, ¥£=0, (5)
the equation of motion of the string, which follows from extremizing the action (1), is

) =" (6)
The momentum conjugate to »*(o, 1) is

m(o,7) = (Ty/c) #(o,T1), (7)
so that the canonical commutation relations are
[x*(o, 1), 7" (0", T)] = ihé(0—0”) 9™, (8)

where 7*” denotes the space-time metric (taken to be 9 = —1;9” = 1 foreachj, 1 <j < d—1;

7 =0, p #v).
Consider first a closed string moving in R*1. (For the bosonic string theory that we are

23 [ 15 ] Vol. 329. A
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considering, the space has to be 26-dimensional for consistency of the theory.) Then, the
general solution to (6) can be written

2(0,7) /1= Py (€7%) + 1 (€, )
‘ -
where Xi(z) = ¢q—ipylnz+i Y 7“2'” (10q)
n#0
' . oy
and Xp(2) = q—ipglnz+i 3 2z, (105)
n#0

and the factor of /™! has been included to leave ¢, p and a dimensionless.
The periodicity boundary condition x(o, 7) = x(¢+2r), applied to all the components of x,
then implies

L=ptr=0 (11)

say. The canonical commutation relations (8) are then equivalent to
[t an”] = [ont', 0] = md,, 0, [ozt,ap*] =0, (12)
[¢, "] = bin™. | (13)

This means that p* has the representation

= 1id/0g". (14)

We consider the case in which the whole space is not R?*®'! but some of the directions are
compact. Consider the simplest case in which one of the directions, x', is compactified into a
circle of radius R = la (so that a is a dimensionless parameter). Because the string might wind
round the circle some integral number of times, m, say, the periodicity condition for the x!

component is replaced by
1o, 1) = x'(0+2m, T)+2nmR. (15)

Note that the integer m, the winding number is a classical concept. The condition (15) implies
that, rather than (11), 3, py satisfy

1~ by = 2ma, (16)
and the corresponding quantum conditions are
[¢'.p1] = [¢" 4] = 3, (17)
which have the representation
=1i0/0¢' + ma, py = 1i0/0¢'—ma. (18)

Now the wave function of the string has to be single valued on the circle and so its
dependence on ¢' must be a sum of terms of the form

etnd'/a (19)

for some integer n. This is the familiar quantization of momentum resulting from the periodicity
on a circle. The quantum number 7, in contrast to the winding number m, is indeed a quantum
concept.

[ 16 ]
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If we consider the two parts of the momentum, left-moving and right-moving, as part of a
single vector we can write

(1:0%) = (n/2a+ma;n/2a—ma). (20)

Because m and n, for apparently very different reasons, are integers, we see that the vector (20)
lies on a lattice in R®. If we introduce an indefinite inner product on this two-dimensional real
space, so regarding it as R™!

(pL;#R)* = (p1)* = (pR)* = 2mn, (21)
we see that the inner product of any two points of this momentum lattice is an even integer.
A lattice with this property is an even lorentzian lattice. In fact this lattice is also self-dual, that
is it is the same as its dual or reciprocal lattice, the lattice consisting of all points having integral
inner products with all points of the lattice defined by (20). Such even self-dual lattices can only
exist in spaces R'¥ for which M — N is a multiple of 8. Their particular significance in relation
to string theory is one of the realizations of the past few years (Frenkel 1985 ; Goddard & Olive
1984; Narain 1986; for a recent review see Lerche ef al. 1989).

We note that this lattice is invariant under the replacement

a—>1/2a. L(22)

This operation interchanges the classical winding number m with the quantum number z. Such
a symmetry is very analogous to the symmetry (Goddard ¢t al. 1977) between the quantum-
mechanical electric charges and the classical magnetic charges that exist in spontaneously
broken gauge theories that possess classical solutions, of the 't Hooft-Polyakov type, bearing
magnetic charge. The classical and quantum nature of m and 7 is made clear by writing down
the corresponding component of the total left-moving momentum of the string

P =omT,lpt)c=mRT,/c+nh/2R, ' (23)

the first term on the right-hand side being classical and the second quantum. In terms of the
original radius R, the replacement (22) is

R—>ct/nT,R, (24)

making clear the quantum-mechanical nature of the transformation.

The Fks symmetry occurs at the fixed point of this transformation, namely at a = J;. At this
point the symmetry of the quantum theory of the closed string increases from U(1) to SU(2)
(or, more precisely, from U(1) xU(1) to SU(2) x SU(2)). Thus the symmetry is indeed
intrinsically quantum mechanical. ‘

A signal of the increased gauge symmetry appearing at a = J; is the appearance of extra
massless states. Suppose we denote states of the string with momentum but no excitations by

LHH S (25)

where £ denotes the momentum, both left- and right-moving, in the non-compact directions
and £}, and £}, denote the components in the compact direction. Then they are always massless
states of the string -

azyafk; 0505, (26)
where g # 1 and #* = 0. (We are using ‘mass’ in the usual sense of being associated with the
non-compact dimensions of the space-time in which the string is moving.) These states

[ 17 ] 23-2
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correspond to a massless vector particle, the gauge particle associated with the U(1) symmetry.
(There is a similar gauge particle, obtained by interchanging left and right, associated with the
other U(1) symmetry.) At a = J;, extra massless states appear:

aff |k; £4/2;0), (27)

where again g # 1 and k* = 0. These are the extra gauge bosons corresponding to the
enhancement of the U(1) symmetry to SU(2) through the Fks mechanism.

The states (26) and (27) satisfy the constraints required of physical states of the closed string
in this covariant formalism

Lyly>=0, Lily>=0, >0, (284)

(Lo+L3) ) =219, (284)

Lyly) = LIy, (29)

where L is defined in terms of " and ag = p*, and L¥ is defined in terms of a¥ and af = p¥,
by equations of the form: o 1/ dx\?
— -n-2 _ =1 -

L(z) = n‘Z_w L,z 2.(1 o) (30)

1 ©
Ln=-2- DI 2 (31)

The colons denote normal ordering with respect to the operators a,,. The L, defined by these
equations satisfy the Virasoro algebra

[Ls o] = (m—1) Ly + 15em(m*—1) 8, _,, (32)

with the central charge ¢ = 26, the dimension of space-time required for consistency.

The considerations we have discussed here generalize from compactification on a circle to
compactification on some more general torus. We can construct such a torus by identifying
points in space related by displacements lying on some lattice 4, whose points span the
dimensions that are being compactified. This means that we view space-time as a quotient
R?*:1/4. In the simple example of compactification on a circle, we have A4 = 2nRZ.
Generalizing R = la, it is convenient to write A4 = 2riI". Then, instead of (16) we have

pr—pr =2y forsome vyel. (33)

For the string’s wave function to be single valued, it has to be a sum of terms whose dependence
on g is of the form €"#?, where § has integral inner product with all the points of the lattice I'.
This means that the projection f’ of £ onto the space spanned by I has to lie on the lattice I'*
dual to I'. It then follows that the corresponding projections py, pg, of pr. and pg, respectively,
can be put together to form the vector

(PLipz) = GF +v.36 —y), vel, fel*. (34)

This again forms an even self-dual lattice, in R™» where M = dim I" (Englert & Neveu 1985;
Narain 1986).

As we saw in the case of compactification on the circle, for particular quantum-mechanical
values of the dimensions of such a torus, the extra massless particles appear, indicating
enhancement of symmetry. The generators of such symmetries can be constructed from the

[ 18]
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vertex operators describing the emission of these massless vector particles. For definiteness,
consider massless particles whose momentum in the compact dimensions is entirely associated
with the left-moving modes on the string and whose momentum in the uncompactified
dimensions is associated with the right-moving modes. The vertex describing the emission of
such a particle will consist of the product of a right-moving part and a left-moving part. The

right-moving part is of the form, . PdXe /dz:eltFR:, (35)

If we denote the left-moving part of the vertex by 7°%(z), under quite general considerations
the moments of 77%(z) will satisfy an affine Kac-Moody algebra, g,

[Th T3] = if " Thin +kmd, _, 0%, (36)
@®
where T*(z)= X% Tiz™% (37)
fi=—0

The moments will also satisfy

Ly T3] = =0T 5 (38)
The zero moments 77 satisfy the Lie algebra of a compact group, with Lie algebra g,
[T5, Tl = if*** T, (39)

which is the gauge group provided by the Fks mechanism. The quantity £ determines the level
of the affine Kac-Moody algebra. (For further explanation of the Fks mechanism see, for
example, Green et al. (1987) or Goddard (1987); for a review of Kac-Moody algebras in
relation to their applications in physics see Goddard & Olive (1986).)

3. TyrEe II sTRINGS

As we have remarked, to get consistency in the bosonic string theory discussed in the last
section we need ¢ = 26 in (32). To get a theory in four-dimensional space-time, we need to
compactify 22 of the dimensions. Even compactifying these, on a suitable torus for example, we
would still be left with a tachyonic state (a state of negative squared mass) as a bar to any sort
of realistic physical interpretation. At present there are basically two sorts of ways of avoiding
tachyons. Firstly, there are the superstring theories, in which fermionic degrees of freedom are
added to the bosonic. This reduces the ‘critical dimension’, in which the theory achieves’
consistency, from 26 to 10, and the value of ¢ in (32) is now 15, receiving a contribution of one
from each bosonic degree of freedom and a half from each fermionic one. We restrict attention
here to the closed superstring theories (type II theories), considering the introduction of
symmetry by a fermionic analogue of the Fks procedure. Secondly, there are the heterotic string
theories, which, as we mentioned in §1, are a sort of hybrid between the superstring and the
bosonic string. The gauge symmetry here comes from compactification of the extra bosonic left-
moving degrees of freedom, using the Fks mechanism, and so producing, before any symmetry
breaking, a rank sixteen gauge group, E; X E; or Spin(32)/Z,. .

The large extra number of dimensions in the heterotic string theory results in a much larger
gauge symmetry than has so far been observed. After compactification of the 16 extra bosonic
degrees of freedom, one is left with a 10-dimensional theory. It is still necessary to compactify
a further six to obtain a four-dimensional world. This further compactification has been
typically used to break the large symmetry resulting from the Fks mechanism to something

[19]
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more compatible with observation. However, if it were done in a symmetrical way, and it might
be that in such a further compactification one is driven to the sort of fixed of a transformation
like (22), the symmetry would be further enhanced rather than reduced.

We shall consider here attempts that have taken place in the last two years to incorporate
gauge symmetry into type II superstring theories (Bluhm et al. 1987, 1988; Kawai et al. 1987;
Antoniadis et al. 1987). These attempts have succeeded in showing that, contrary to previous
expectations, it is possible to incorporate non-abelian symmetries into such theories, including
ones large enough to contain the gauge group, SU(3) x SU(2) x U(1), of the ‘standard model’.
At the moment there seems unfortunately to be a firm obstacle to obtaining a realistic spectrum
of quarks and leptons (Dixon et al. 1987).

In the superstring, in addition to the bosonic degrees of freedom moving each way, described
by X*(z), there are fermionic degrees of freedom described by fermion fields, y*(z), 1 < g < d,
where d is the dimension of space-time. Now the expression for the Virasoro generators has
to include both bosonic and fermionic degrees of freedom,

L(z) = E.(liX ) ; ‘(’;/Z’:/f (40)

and the algebra defining the physical state conditions is extended to include supcr-Vlrasoro
or ‘superconformal’ generators,

dX

G(z)=%G6,z = v)ig, (41)
The final algebra is now ’
[Lis Lol = (m—n) Ly, +igem(m® —1) 8, _,, (424)
[Ln, G,]1 = (3m—7) Gy (426)
{G,, Gy} = 2L, ,, +5c(r*—7) &, _,. (42¢)

Here, m, n are integers and 7, s can be either half-odd-integers (Neveu-Schwarz case) or integers
(Ramond case), the former corresponding to excitations being space-time bosons and the latter
to their being space-time fermions. In (42), ¢ = 15 for consistency, corresponding to a space-
time dimension of 10, with a contribution of 1 from each boson and } from each fermion. The
fermion field has an expansion of the form

Y(2) =2y, 274 (43)

The physical state conditions take the form r
Lly>=0, Gly>=0, nr>0, (444a)
(Lo—2) l¥> = 0. (445)

In the case of the type II superstring, there is an algebra and set of conditions like this for
both the left- and the right-moving modes. (For the heterotic string, the left-moving modes
have only bosonic degrees of freedom, carrying the internal symmetry, ¢ = d = 26, whereas the
right-moving modes have d =10, ¢=15.) To get a four-dimensional theory, one must
compactify six of the 10 dimensions, regarding them as internal.

Initially, it was thought that type II strings could only have U(1) gauge symmetry. Then
it was realized that for suitable correlations of left- and right-moving modes, at the critical

[ 20 ]
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radius, one could get SU(2)® symmetry (Bluhm & Dolan 1986), which was non-abelian but not
very interesting phenomenologically. Finally, it was seen how this could be generalized to the
groups SU(2) x SU(4) and SO(5) x SU(3), or subgroups thereof. To describe this procedure
for incorporating gauge symmetry into the superstring, it is best to replace the six internal boson
degrees of freedom by 12 internal fermions,-making 18 internal fermions in all. Then the part
of (40) corresponding to the six internal dimensions can be rewritten

Ly (2) = 3:9"dy?/dz:, (45)
where the sum is over a = 1 to 16. The method of introducing gauge symmetry is to change the
internal part of (40) to - G, (2) = —Hifunc ¥*(2) ¥°(2) ¥°(2), (46)

where f,,, are the structure constants of an 18-dimensional semisimple Lie algebra, g, which
gives the possibilities SU(2)¢, SU(2) x SU(4) and SO(5) x SU(3) (Bluhm et al. 1987). It can
be shown (Goddard & Olive 1985) that (45) and (46) satisfy a super-Virasoro algebra with
a central charge ¢,,, = 9, and the theory can be arranged so that it has a corresponding gauge
symmetry whose generators 7'y are moments of

T*(2) = —3ifnc ¥ (2) ¥*(2). (47)

This symmetry can easily be broken from g to g’ < g, where g/g’ is a symmetric space. It is
in fact possible to obtain a type II theory with a gauge symmetry group which is any subgroup
of SU(2)%, SU(4) x SU(2), SO(5) x SU(3), SU(3) x SU(2)?, SU(3)? or G, (Dixon et al. 1987).

In many ways these models appear very attractive. It is possible to obtain representation
contents which are tantalizingly close to those observed in nature (Bluhm et al. 1988). The
states one focuses on are those that are massless. According to the currently accepted
interpretation of string theory, it is only these states that should be directly physically
observable in practice, because all other states will have masses of the order of m;, far above
accessible energies. The massless states will have to acquire their masses as the result of some
symmetry breaking, often ascribed to some conjectured non-perturbative effect. It seems not
too difficult to construct models that seem fairly natural, and in which the observed states
and few others occur, but as the massless level and the first excited level rather than all at the
massless level. It is difficult to know what significance to attach to these ‘near misses’. In fact
there is the rather general argument of Dixon ¢t al. (1987) to the effect that it is impossible to
construct a type II model with a gauge group containing that of the standard model,
SU(3) x SU(2) x U(1), with massless states transforming non-trivially under both SU(3) and
SU(2), as we need for certain of the quark states in nature.

As a preliminary to sketching this argument, note that if we have an affine algebra as in (36)
and (38), we can place a lower bound on the value of the central charge of the Virasoro
algebra. To do this we make use of the Sugawara construction of a Virasoro algebra out of an
affine Kac-Moody algebra, defining

L1 = G AT Tl (48)

where the normal ordering operation denoted by the crosses is defined by
XTe T =T Ts, 1f'n/0}

=TT, ifn<0
[21]
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the quantity @7 is the quadratic Casimir operator of g in the adjoint representation,
St = e, (50)
The £7 satisfy the Virasoro algebra with central‘ charge
¢ = 2kdimg/(2k+ Q7) : (61a)
= xdim g/ (x+A9). (615)

The number x = 2k/¥?, where ¥ is a long root of the Lie algebra g, is called the level of the
representation of §; h* = Q7/¥? is called the dual Coxeter number of g. Both x and 4? have to
be integers. If we consider K,=L,—% (52)

we obtain a Virasoro algebra with a value of the central charge ¥ = ¢—¢’. Because the
representation of the Virasoro algebra K is easily seen to be unitary, at least if we restrict
attention to L,,, and with the spectrum of K, bounded below, it follows that ¢* > 0 and so

Cny = €. (53)

This can be viewed as an example of the coset construction (Goddard ef al. 1985, 1986).

In the case of type II theories, the gauge particles could come from either both the
Neveu-Schwarz sectors of both the left- and right-moving modes, or the Ramond sector of both
modes. (The particles that come from the Neveu-Schwarz sector of one and the Ramond sector
of the other are space-time fermions.) Assuming that they come from the Neveu-Schwarz
sector of both, let us consider the gauge symmetry resulting from the construction (46) applied
to the left-moving modes. There are in superstring theories two parts to the vertex describing
such a particle, which in this case consists of a bosonic part, 7%(z), and a fermionic part, y*(z).
One can show on quite general grounds that the moments of these satisfy

[T%, T3] = if*°T5,, + ki, _, 8%, (54a)
[T, X?] = ifabc - (540)
{xr, xs} =90, ,0%°, ' (54¢)

a super-Kac-Moody algebra. Given such a construction, we can perform a subtraction (rather
as in the coset construction), and set

T%(2) = T*(2) —3if"x*(2) X°(2). | (65)

Then 7%(z) will provide a representation of the affine Kac-Moody algebra (54a) which
commutes with ¥*(z). We can then construct two commuting Virasoro algebras, the Sugawara
construction applied to 7%(z), £(z), and the Virasoro algebra, L*(z), associated with the
free fermion fields y*(z). Again

K(z) = Liy(2) — &°(2) — LX(2) (56)

is a Virasoro algebra, commuting with both T%(z) and x’(z), and with central charge ¢* =
¢ — &% —1dim g, where # is the central charge for %7 and 1dim g is that for L*. Thus it follows
that
€y = E+3dimg. (57)
[22]
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We are interested in the case g = su(3) @ su(2) @ u(1), for which dimg = 12, and
0= @ @ 4 pud), (58)
so that Cine = 10, (59)

whereas we should have ¢, = 9 for a type II theory, as there are six internal dimensions. This
is the basic contradiction, or obstacle to getting a realistic type II string theory at present.

There are some further.points to be made. If the non-abelian gauge symmetry is associated
with the left-moving modes, it can be shown that the fermions for which the left-moving modes
are of Ramond type cannot be massless (and so correspond to particles that might in practice
be observable): Hence, the non-abelian gauge symmetry cannot be divided between the left-
and right-moving modes. Moreover, if there is a right-moving U(1) gauge symmetry, the
massless fermions can be shown to be neutral under it, so in practice it is of little relevance. The
only remaining obvious possibility is that some or all of the gauge particles are of
Ramond-Ramond type. Dixon et al. also present argument to exclude this, though it is perhaps
in this region that the best hope for a chink in the argument lies.

All this said, it is intriguing that just one unit of ¢, just a <10 %, effect’, bars us from producing
a more nearly realistic type II string theory. The progress of string theory, and our
understanding of its structure and interpretation, has been punctuated by ‘no-go theorems’ of
this sort. Usually, the way forward has been to the side (which could perhaps point to heterotic
string theory), or to take more seriously what string theory itself is insisting on as its own
interpretation. Given that the philosophy of string theory is that, once all the consistency
conditions are known, the correct physical theory should be uniquely determined, some reason
has in any case to be found why these type II theories are inconsistent, not merely
phenomenologically unacceptable. In any case, the delicacy of the discrepancy might suggest
that the mechanisms described in this section deserve further consideration.
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